
1

oneTesla
Interrupter Firmware Guide
Contents:

•	 General	overview	(page	1)
•	 Code	Walkthrough	(page	2)
•	 How	to	program	the	interrupter	(page	15)
•	 Compiling	the	code	(page	16)

General Overview

The	oneTesla	MIDI	controller	is	based	on	the	ATMega	328P	
microcontroller,	manufactured	by	Atmel.		At	its	heart,	the	hard-
ware	on	the	board	is	extremely	simple	-	a	5V	regulator	pro-

vides	power	to	the	board,	a	DIN5	MIDI	jack	connects	a	MIDI	source	
to	the	microcontroller	through	an	optocoupler	(this	is	necessary	to	
prevent	ground	loops	between	the	MIDI	source	and	MIDI	receiver),	
and	an	optical	transmitter	(which	is	simply	an	LED	in	a	fancy	pack-
age)	sends	the	output	pulses	to	the	Tesla	coil.

The	interrupter’s	firmware	is	written	in	C++,	and	is	provided	as	an	
Arduino	project	(compatible	with	the	Arduino	IDE).	Upon	reception	
of	a	MIDI	message,	the	code	calls	an	appropriate	handler	function	
(callback function)	to	process	the	message.

The	code	is	organized	in	several	files.	In	general,	each	chunk	of	code	
is	split	across	two	files	-	a	.h	header file,	which	defines	constants	and	
provides	function	definitions	to	other	files,	and	a	.cpp	file,	which	
contains	the	actual	implementations	of	the	functions.

2

shared.h	and	constants.h
shared.h	and	constants.h	contain	definitions	for	global	vari-
ables	and	defined	constants,	respectively.		A	global variable is	one	
that	is	defined	across	all	files,	and	is	accessible	by	all	functions.	
They	need	to	be	declared	in	a	header	file	-	this	is	necessary	in	
order	to	indicate	to	all	program	files	accessing	this	variable	that	it	
exists.	However,	they	can	only	be	defined	once,	in	a	.cpp	file.	

#ifndef __SHARED_H

extern volatile int on_time_1, on_time_2, current_
pitch_1, current_pitch_2, global_scaler_1, global_
scaler_2;
extern volatile long ticks_1, ticks_2;
extern volatile long note_1_period, note_2_period;
extern volatile boolean note_playing_1, note_play-
ing_2;
extern volatile long sustain_time_1, sustain_time_2;
extern volatile boolean sustain, sustaining_1, sus-
taining_2;

#define __SHARED_H
#endif

on_time_1 and on_time_2 are	the	computed	ON	times	
of	the	two	currently	running	notes.		current_pitch_1	and	
current_pitch_2	are	the	current	pitches	of	the	two	notes	
(in	MIDI	byte	format).		global_scaler_1	and	global_
scaler_2 are	values	from	0-127	which	are	used	to	scale	the	
volumes	of	the	notes.
ticks_1	and	ticks_2	are	two	values	used	internally	by	the	
sustain	feature.	note_1_period	and	note_2_period	are	
the	periods	(in	microseconds)	of	notes	1	and	2.	note_play-
ing_1	and	note_playing_2	are	flags	which	indicate	whether	

notes	1	and	2	are	present.	sustain_time_1	and	sustain_
time_2	are	internal	variables	used	by	the	sustain	feature.	sustain	
indicates	whether	the	sustain	pedal	is	depressed,	and	sustain-
ing_1	and	sustaining_2	indicate	whether	notes	1	and	
2	are	in	the	“tail”	part	of	a	sustain,	respectively.		Moving	on	to	
constants.h:

#define LOOKUP_TABLE_SCALE 3

This	line	defines	a	constant	which	is	used	to	scale	all	of	the	values	
in	the	pulse	width	table.	When	modifying	the	code,	it	is	important	
to	remember	this	value	exists!	It	makes	modifying	the	table	values	
for	different	sizes	of	Tesla	coil	easy.

#define MIN_ON_TIME 10

This	line	defines	a	minimum	ON	time	value	(in	microseconds).	
This	insures	that	the	pulse	widths	are	never	too	low	(which	
would	make	the	coil	stop	producing	output).	The	next	few	lines	
should	not	be	messed	with,	so	moving	along...

#define map_velocity(v) (vel_map[v])
#define map_sustain(t) ((float) t / (float) SUSTAIN_
TIME)

These	two	change	the	mapping	curves	for	velocity	and	the	shape	
of	the	sustain	envelope,	respectively.	v	is	a	byte	from	0-127	(the	
higher	the	velocity,	the	larget	the	value).	t	is	the	time	into	the	
sustain	curve,	in	microseconds.

3

shared.h	and	constants.h
#define SUSTAIN_TIME 750000
#define ON_TIME_ARRAY_LENGTH 20
static int on_times[] = ...

SUSTAIN_TIME	defines	the	length	of	the	sustain	period	in	
microseconds.	ON_TIME_ARRAY_LENGTH	defines	the	length	of	
the	on-times	array	(necessary	since	C++	arrays	don’t	store	their	
own	lengths).	on_times[]	is	an	array	that	stores	the	on-times	
of	the	coil	for	different	frequencies	of	note,	measured	in	micro-
seconds.

static int vel_map[] = ...

Finally,	this	line	defines	a	lookup	table	for	velocity	mapping.

4

interrupter.ino
interrupter.ino contains	the	main	program	code.	It	does	
two	things:	set	up	the	microntroller	configuration	registers	and	
enter	an	infinite	main	loop	which	handles	MIDI	messages.

void setup() {
 DDRD |= (1 << 2);
 PORTD &= ~(1 << 2);

 DDRD &= ~(1 << 3);

The	first	statement	sets	the	transmitter	pin	to	output	mode.	The	
second	sets	its	value	to	zero.	The	third	sets	the	mode	switch	pin	
to	input	mode.

setupADC();
setupTimers();

These	two	lines	call	functions	(defined	in	util.cpp)	that	set	up	
the	ADC	and	timers.

MIDI.begin(MIDI_CHANNEL_OMNI);
MIDI.setHandleNoteOn(HandleNoteOn);
MIDI.setHandleNoteOff(HandleNoteOff);
MIDI.setHandleStop(HandleStop);
MIDI.setHandleContinue(HandleContinue);
MIDI.setHandleControlChange(HandleControlChange);
MIDI.setHandleSystemExclusive(HandleSystemExclusive);
MIDI.setHandlePitchBend(HandlePitchBend);

MIDI.setHandleSystemReset(HandleSystemReset);

These	statements	set	up	the	MIDI	library.	The	first	line	initiates	
MIDI	communications.	The	next	few	lines	set	the	handlers	for	
each	type	of	MIDI	message.	To	add	a	new	handler,	declare	a	new	
function	somewhere	that	takes	the	appropriate	arguments	(look	

in	MIDI.h	for	the	argument	types),	and	then	attach	it	to	the	
MIDI	class	with:

MIDI.setHandleMessageType(messageHandlerName);

if (!(PIND & (1 << 3))) fixedLoop();

Finally,	this	line	reads	the	pin	the	toggle	switch	is	connected	to,	
and	enters	the	fixed-frequency	loop	if	that	pin	is	low.
interrupter.ino also	contains	two	loops	-	a	MIDI	loop	and	a	
fixed-frequency	loop.	The	MIDI	loop	is	very	simple:

void loop() {
 MIDI.read();
}

The	loop	simply	repeatedly	calls	MIDI.read().	Nothing	else	is	
needed	-	whenever	a	MIDI	message	is	received,	the	MIDI	library	
automatically	calls	the	appropriate	callback	function	we	attached	
in	setup().	

The	fixed-frequency	loop	is	a	little	more	complex.	Briefly,	it	
reads	the	values	set	by	the	two	potentiometers	every	iteration,	
then	turns	the	optical	transmitter	ON	and	OFF	for	appropriate	
amounts	of	time	using	delays.

void fixedLoop() {
 while (1) {
 ADMUX &= ~(1 << MUX0);
 _delay_us(300);
 uint8_t val_2 = ADCH;

This	first	sets	the	value	of	the	ADMUX	register.	This	selects	which	
ADC	pin	to	read	from.	Next,	it	waits	for	300	microseconds	to	
make	sure	the	ADC	is	selected,	and	finally	reads	the	ADC.

5

interrupter.ino
int period_delay = 3500 + (long) 1500 * val_2 / 256;

This	line	computes	the	cycle	delay	time	based	on	the	value	read	
from	the	ADC.		The	minimum	frequency	is	200Hz,	the	maximum	
frequency	is	approximately	300Hz.	

ADMUX |= (1 << MUX0);
_delay_us(300);
uint8_t val_1 = ADCH;

These	three	lines	read	in	the	value	of	the	pulsewidth	pot.

double on_time_scale = (double) val_1 / 256;
int on_time = getOnTime(1 / period_delay);
on_time *= on_time_scale;
if(on_time < MIN_ON_TIME) {on_time = MIN_ON_TIME;}

Next,	we	compute	the	scale	factor	for	the	on	time,	call	getOn-
Time()	to	compute	the	on	time,	and	scale	it	by	the	computed	
scale	factor.	Finally,	if	the	on	time	is	too	small,	we	clamp	it	from	
below	to	MIN_ON_TIME.	

PORTD |= (1 << 2);
delayMicroseconds(on_time);
PORTD &= ~(1 << 2);
delayMicroseconds(period_delay);

Finally,	we	turn	the	optocoupler	on,	wait	for	on_time	microsec-
onds,	turn	it	off,	and	wait	for	period_delay microcseconds.

6

handlers.cpp
handlers.cpp	contains	the	MIDI	message	handlers	that	are	
called	upon	reception	of	MIDI	messages.	These,	along	with	the	
timer	setup	and	ISR’s	found	in	timers.cpp,	form	the	core	func-
tionality	of	the	interrupter.

void HandleNoteOn(byte channel, byte pitch,
 byte velocity) {
 if (channel != 1) return;
 PORTD &= ~(1 << 2);

HandleNoteOn	takes	the	channel	the	message	occured	on,	
the	MIDI	pitch	byte,	and	the	MIDI	velocity	byte	of	the	note	as	
arguments.	First,	if	the	message	is	not	on	channel	1,		it	is	ignored.	
Next,	we	turn	off	the	optical	transmitter,	just	to	be	safe.

if (velocity == 0) {
 if (pitch == current_pitch_1) {
 HandleNoteOff(channel, pitch, velocity);
 }
 if (pitch == current_pitch_2) {
 HandleNoteOff(channel, pitch, velocity);
 }
 return;
}

Next,	we	check	whether	the	velocity	is	0.		A	zero-velocity	note-
on	message	turns	off	a	note	-	we	check	which	note	to	turn	off	
by	comparing	it	to	the	stored	note	pitches	(note	that	a	file	or	
instrument	should	never	turn	on	a	note	twice	in	a	row,	with	no	
note-off	message	in	between).

if (pitch == current_pitch_1 && note_playing_1 &&
sustaining_1) {

 stopTimer1();
 sustaining_1 = false;
 global_scaler_1 = map_velocity(velocity);
 startTimer1(pitch);
 return;
}
if (pitch == current_pitch_2 && note_playing_2 &&
sustaining_2) {
 stopTimer2();
 sustaining_2 = false;
 global_scaler_2 = map_velocity(velocity);
 startTimer2(pitch);
 return;
}

We	next	handle	the	special	case	where	a	key	is	released,	but	im-
mediately	afterwards,	during	the	sustain	period,	the	key	is	de-
pressed	again.	In	this	case,	we	clear	the	“sustaining”	status	of	the	
previous	note,	and	restart	the	timers,	taking	into	account	the	new	
keypress.

if (note_playing_1) {
 if (note_playing_2) {
 stopTimer1();

 stopTimer2();

Next,	we	try	to	start	playing	the	note.	In	the	first	case,	notes	1	
and	2	are	both	playing,	so	we	proceed	by	stopping	both	timers.

7

handlers.cpp
if (pitch >= TIMER_2_MIN) {
 global_scaler_1 = global_scaler_2;
 sustaining_1 = sustaining_2;
 sustain_time_1 = sustain_time_2;
 global_scaler_2 = map_velocity(velocity);
 sustaining_2 = false;
 startTimer1(current_pitch_2);
 startTimer2(pitch);
}

The	next	bit	of	code	tries	to	find	a	timer	to	play	the	new	note.	
The	default	behavior	of	the	interrupter	tries	to	forget	the	old-
est	note.		In	other	words,	when	a	new	note	comes	in,	the	cur-
rent	note	2	replaces	note	1,	and	the	new	note	becomes	note	2.	
However,	because	of	timer	prescaler	restrictions,	note	2	cannot	
be	below	a	certain	pitch	(defined	as	TIMER_2_MIN).		If	the	new	
note	statisfies	this	restriction,	the	code	proceeds	as	described.

else if (current_pitch_2 >= TIMER_2_MIN) {
 global_scaler_1 = map_velocity(velocity);
 sustaining_1 = false;
 startTimer1(pitch);
 startTimer2(current_pitch_2);
}

Otherwise,	the	code	leaves	note	2	as	is,	and	sets	note	1	to	the	
current	note.

else {
 startTimer1(current_pitch_1);
 startTimer2(current_pitch_2);
}

Finally,	if	all	else	fails,	the	code	ignores	the	new	note	and	contin-

ues	playing	the	old	notes.
If	only	one	note	is	playing,	the	code	tries	to	find	a	place	for	the	
new	note:

else if (pitch >= TIMER_2_MIN) {
 stopTimer2();
 global_scaler_2 = map_velocity(velocity);
 sustaining_2 = false;
 startTimer2(pitch);
}

If	the	new	note	meets	the	requirements	of		Timer	2,	note	2	is	set	
to	the	new	note.

else if (current_pitch_1 >= TIMER_2_MIN) {
 stopTimer1();
 global_scaler_2 = global_scaler_1;
 sustaining_2 = sustaining_1;
 sustain_time_2 = sustain_time_1;
 note_playing_2 = true;
 current_pitch_2 = current_pitch_1;
 global_scaler_1 = map_velocity(velocity);
 sustaining_1 = false;
 note_playing_1 = true;
 current_pitch_1 = pitch;
 startTimer1(current_pitch_1);
 startTimer2(current_pitch_2);
}

Otherwise,	the	code	tries	to	swap	note	1	into	note	2	if	possible,	
and	then	set	note	1	to	the	new	note.	If	all	fails,	the	code	ignores	
the	new	note.

8

handlers.cpp
else {
 stopTimer1();
 global_scaler_1 = map_velocity(velocity);
 sustaining_1 = false;
 startTimer1(pitch);
}

Finally,	if	no	notes	are	already	playing,	the	new	note	becomes	note	
1.

void HandleNoteOff(byte channel, byte pitch,
 byte velocity) {
 if (channel != 1) return;

The	next	function	is	the	note	off	handler.	We	begin	by	ignoring	all	
messages	not	from	channel	1.

if (!sustain) {
 if (pitch == current_pitch_1) {
 stopTimer1();
 note_playing_1 = false;
 } else if (pitch == current_pitch_2) {
 stopTimer2();
 note_playing_2 = false;
 }
}

Next,	if	sustain	is	not	enabled,	check	what	note	corresponds	to	
the	note	off	message,	and	stop	that	note.

else {
 if (pitch == current_pitch_1) {
 sustaining_1 = true;
 sustain_time_1 = SUSTAIN_TIME;
 } else if (pitch == current_pitch_2) {
 sustaining_2 = true;
 sustain_time_2 = SUSTAIN_TIME;
 }
}

If	sustain	is	enabled,	instead	of	stopping	the	timer,	we	set	the	
sustain	flag	for	the	appropriate	note.	sustain_time_x	counts	
how	many	microseconds	of	the	sustain	“tail”	remain.	Note	that	
the	handler	doesn’t	actually	do	any	of	the	fading;	instead,	the	
sustain	flag	tells	the	timer	that	it	should	start	fading	the	note	away	
every	cycle.

void HandleStop() {
 stopTimer1();
 stopTimer2();
 sustaining_1 = false;
 sustaining_2 = false;
 note_playing_1 = false;
 note_playing_2 = false;
}

The	next	function	handles	the	MIDI	stop	message.	It	simply	turns	
off	both	notes,	taking	care	to	reset	the	sustaining	states	to	
false.

void HandleContinue() {
 if (note_playing_1) startTimer1(current_pitch_1);
 if (note_playing_2) startTimer2(current_pitch_2);
}

Continue	messages	are	handled	by	resuming	all	notes	that	were	
playing	when	MIDI	was	paused.

9

handlers.cpp
void HandleControlChange(byte channel, byte number,
 byte value) {
 if (channel != 1) return;

Control	change	messages	contain	a	command	number	(which	
specifies	the	type	of	command)	and	a	value	(the	argument	of	the	
command).	First,	as	usual,	we	ignore	all	messages	that	are	not	in	
channel	1.

if (number == 0x78 || number == 0x79 ||
 number == 0x7B || number == 0x7C) {
 stopTimer1();
 stopTimer2();
 sustaining_1 = false;
 sustaining_2 = false;
 note_playing_1 = false;
 note_playing_2 = false;
}

Commands	0x78,	0x79,	0x7B,	and	0x7C	are	all	STOP	mes-
sages;	in	this	case,	we	turn	off	the	timers,	and	flag	the	notes	as	not	
playing.

if (number == 0x40) {
 if (value < 64) {
 sustain = false;
 if (sustaining_1) {
 sustaining_1 = false;
 note_playing_1 = false;
 stopTimer1();
 }
 if (sustaining_2) {
 sustaining_2 = false;
 note_playing_2 = false;
 stopTimer2();

 }
 } else {
 sustain = true;
 }
}

Command	0x40	toggles	sustain;	data	values	less	than	64	turn	
sustain	off	(and	halts	all	sustaining	notes);	otherwise,	sustain	is	
turned	on.	This	message	is	sent	whenever	the	sustain	pedal	is	
depressed	or	released.

void HandlePitchBend(byte channel, int value) {
 if (channel != 1) return;
 float fbend_amount = ((float) value)/((float)
(0x2000));

The	pitch	bend	handler	first	computes	the	fractional	pitch	bend.	
The	MIDI	library	automatically	turns	the	MIDI	pitch	bend	un-
signed int	into	an	int	centered	around	zero.	We	scale	it	by	
0x2000	(the	maximum	pitch	bend	value)	to	get	the	fractional	
bend	value.

float bender = 1.0f - 0.1*fbend_amount;

Next,	it	computes	a	“bend	factor”;	this	is	used	to	scale	the	fre-
quency.

long temp = (long) (bender * ticks_1);
if (temp >= BITS_16) temp = BITS_16 - 1;
OCR1A = (int) temp;
temp = (long) (bender * ticks_2);
if (temp >= BITS_8) temp = BITS_8 - 1;

OCR2A = (int) temp;	

Finally,	it	scales	the	pitch	values	appropriately,	taking	care	not	to	
overflow	the	timer	compare	registers.	More	precisely,	it	scales	the

10

handlers.cpp
ticks	that	are	stored	in	the	timer	compare	registers	(OCR1A and	
OCR2A),	which	are	proportional	to	the	period	lengths	of	the	
notes.

void HandleSystemReset() {
 stopTimer1();
 stopTimer2();
 note_playing_1 = false;
 note_playing_2 = false;
 on_time_1 = 0;
 on_time_2 = 0;
 current_pitch_1 = 0;
 current_pitch_2 = 0;
 global_scaler_1 = 127;
 global_scaler_2 = 127;
 sustain = sustaining_1 = sustaining_2 = false;
}

Finally,	the	firmware	handles	system	reset	messages	by	halting	
both	notes	and	restoring	all	global	variables	to	their	default	val-
ues.

11

timers.cpp
timers.cpp	contains	the	setup	functions	and	the	ISR’s	for	the	
timers,	which	actually	play	a	note.		A	timer is	a	special	piece	of	
hardware	on	the	microcontroller	which	counts	up	every	tick.	
When	the	counter	reaches	a	preset	value,	it	triggers	an	interrupt,	
which	tells	the	microcontroller	to	stop	everything	and	service	the	
interrupt	(by	calling	the	interrupt service routine,	or	ISR).

void startTimer1(byte pitch) {
 long frequency = getFrequency(pitch);
 note_1_period = 1000000 / frequency;
 current_pitch_1 = pitch;
 on_time_1 = getOnTime(frequency);

The	timer	1	setup	routine	begins	by	converting	the	MIDI	note	to	
a	frequency	(in	hertz).	It	then	computes	the	period	in	microsec-
onds,	records	the	current	pitch,	and	looks	up	the	ON	time	for	
the	frequency	specified.	

long ticks = 2 * note_1_period;

	
Next,	it	computes	the	number	of	clock	ticks	per	period	(since	the	
microcontroller	is	running	at	16	MHz,	the	default	value	of	8	cycles	
per	tick	translates	into	0.5	μS	per	tick).

if (ticks <= BITS_16) {
 TCCR1B = (1 << CS11) | (1 << WGM12);

}

If	the	tick	count	doesn’t	make	timer	1	overflow,	the	timer	1	scaler	
is	set	to	0.5	μS	per	tick.

else if ((ticks /= 4) <= BITS_16) {
 TCCR1B = (1 << CS11) | (1 << CS10) | (1 << WGM12);

}

Otherwise,	we	set	the	timer	to	2	μS	per	tick,	and	scale	the	value	
of	ticks	accordingly.

ticks--;
ticks_1 = ticks;
OCR1A = ticks;
if (on_time_1 != 0) {TIMSK1 |= (1 << OCIE1A);}
note_playing_1 = true;

Finally,	it	decrements	ticks	(necessary	for	correct	operation;	
e.g.	1	tick	runs	for	1	μS	and	not	0.5,	since	the	timer	stops	if	its	
compare	register	is	less than	zero),	records	the	tick	value	(neces-
sary	for	pitch	bend),	writes	the	tick	value	to	the	timer	1	compare	
register		OCR1A,	starts	the	timer,	and	flags	note	1	as	“playing”.

Timer	2	operates	nearly	identically	to	timer	1;	only	the	prescaler	
code	is	different:	

long ticks = 16 * note_2_period;
if (ticks <= BITS_8) {TCCR2B = (1 << CS20);}
else if ((ticks /= 8) <= BITS_8) {TCCR2B = (1 <<
CS21);}
else if ((ticks /= 4) <= BITS_8) {TCCR2B = (1 <<
CS21) | (1 << CS20);}
else if ((ticks /= 2) <= BITS_8) {TCCR2B = (1 <<
CS22);}
else if ((ticks /= 2) <= BITS_8) {TCCR2B = (1 <<
CS22) | (1 << CS20);}
else if ((ticks /= 2) <= BITS_8) {TCCR2B = (1 <<
CS22) | (1 << CS21);}
else if ((ticks /= 4) <= BITS_8) {TCCR2B = (1 <<
CS22) | (1 << CS21) | (1 << CS20);}

12

timers.cpp
This	code	repeatedly	increases	the	prescaler	and	decreases	
ticks,	until	the	value	of	ticks	is	an	8-bit	integer	(as	required	
by	timer	2).	The	remainder	of	the	timer	2	setup	code	is	identical	
to	the	timer	1	setup	code.

void stopTimer1() {
 TIMSK1 &= ~(1 << OCIE1A);
}
void stopTimer2() {
 TIMSK2 &= ~(1 << OCIE2A);
}

The	timer	stop	functions	only	stop	the	ISR’s	from	being	called;	it	
is	up	the	calling	function	to	properly	set	the	various	global	flags	
associated	with	halting	a	note.

Finally,	we	have	the	ISR	handlers.	Timer	1	and	timer	2	call	virtually	
identical	ISR’s,	so	we	will	only	describe	ISR	1.

ISR (TIMER1_COMPA_vect, ISR_BLOCK) {

Note	the	rather	cryptic	declaration	of	the	ISR.	This	is	because,	
ISR,	TIMER1_COMPA_vect,	and	ISR_BLOCK	are	all	defined	
constants;	the	C++	preprocessor	expands	this	internally	into	a	
more	conventional	function	declaration.	It	is	not	necessary	to	
know	what	it	expands	to	for	the	end-user’s	purposes.

uint8_t val = ADCH;
float scaler = (float) (val) / 256.0f;
int on_time_1_adjusted = (int) (on_time_1 * scaler);

First,	we	read	the	value	of	the	ADC	(ADCH	is	a	defined	value	that	

expands	to	a	memory	location).		Next,		we	scale	it	to	a	float	
between	0.0 and	1.0,	and	then	scale	the	ON	time	by	it.

scaler = (float) (global_scaler_1) / 256.0f + 0.5f;
on_time_1_adjusted = (int) (on_time_1_adjusted *
scaler);

Next,	we	shift	and	scale	the	velocity	scaler	so	it	is	a	float	be-
tween	0.5	and	1.0,	and	scale	the	ON	time	by	it.

if (sustaining_1) {
 scaler = map_sustain(sustain_time_1);
 on_time_1_adjusted = (int) (on_time_1_adjusted *
scaler);

Next,	we	scale	the	ON	time	to	match	the	time	spent	during	the	
sustain	period.	First,	the	code	maps	the	sustain	time	via	the	map_
sustain()	function,	which	takes	the	time	(in	microseconds)	
spent	sustaining,	and	returns	a	float	between	0.0	and	1.0	
which	describes	the	scale	factor.	Next,	it	multiplies	the	ON	time	
by	that	factor.

sustain_time_1 -= note_1_period;

Next,	we	update	the	time	remaining	in	the	sustain	period.	Since	
we	lack	an	extra	hardware	timer	to	do	this,	we	decrement	the	
sustain	time	by	the	note	period	(since	we	know	the	timer	is	
called	once	every	cycle).

if (on_time_1_adjusted < 3) {
 sustaining_1 = false;
 note_playing_1 = false;
 stopTimer1();
 PORTD &= ~(1 << 2);
}

13

timers.cpp
If	the	computed	pulsewidth	is	less	than	3	microseconds,	the	ISR	
stops	the	timer,	and	unflags	the	note	as	sustaining	and	playing.	This	
is	necessary	since	delay_us()	does	not	function	reliably	for	
times	under	3	microseconds.

if (on_time_1_adjusted < MIN_ON_TIME && !sustain-

ing_1) {on_time_1_adjusted = MIN_ON_TIME;}

If	the	note	is	not	sustaining,	we	clamp	the	pulsewidths	from	below	
to	MIN_ON_TIME,	which	ensures	that	notes	do	not	disappear	
at	low	power	settings	or	velocity	settings	(we	need	a	few	cycles	
before	any	sparks	are	produced).

PORTD |= (1 << 2);
delayMicroseconds(on_time_1_adjusted);
PORTD &= ~(1 << 2);
delayMicroseconds(on_time_1_adjusted);
TIFR2 &= ~(1 << OCF2A);

Finally,	it	turns	the	transmitter	on	for	an	appropriate	amount	of	
time.	After	turning	off	the	transmitter,	it	waits	for	a	period	of	
time,	to	insure	that	the	timers	are	not	fired	too	close	to	each	
other.

14

util.cpp
util.cpp	contains	assorted	short	setup	and	utility	functions,	
which	will	be	documented	here.

void setupADC() {
 ADMUX =
 (1 << REFS0) | // Use AVCC reference
 (1 << ADLAR) | // Left-adjust the result
 (1 << MUX0); // Select ADC1 (on-time pot)

 ADCSRA =
 (1 << ADEN) | // Enable the ADC
 (1 << ADSC) | // Start free-running conversion
 (1 << ADATE) | // Enable auto-triggering
 (1 << ADPS0) | // Set prescaler to 128
 (1 << ADPS1) |
 (1 << ADPS2);

 // Ensure that the auto-triggering source is in
 // free-running mode
 ADCSRB = 0x00;
}

setupADC()	sets	various	ADC	configuration	registers.	More	
precisely,	it	sets	the	individual	bits	of	the	registers,	which	are	each	
flags	that	configure	the	behavior	of	the	microcontroller.	To	do	this,	
it	bitwise	OR’s	numbers	which	correspond	to	singular	1’s	in	the	
correct	position.	ADEN,	MUX0,	etc	are	integers	which	determine	
the	position.

void setupTimers() {

 // Set up 16-bit Timer1
 // CTC mode, hardware pins disconnected
 TCCR1A = 0x00;
 // CTC mode, don’t set prescaler yet
 TCCR1B = (1 << WGM12);
 TIMSK1 = 0x00;

 // Set up 16-bit Timer2
 // CTC mode, hardware pins disconnected, don’t set
 // prescaler yet
 TCCR2A = (1 << WGM21);
 TCCR2B = 0x00;
 TIMSK2 = 0x00;

}

CTC	mode	sets	the	timer	to	Clear	Timer	on	Compare;	i.e.	the	
timer	will	automatically	count	to	the	timer	compare	value,	then	
reset	its	count	to	zero,.

long getFrequency(byte pitch) {
 return (long) (220.0 * pow(pow(2.0, 1.0/12.0),
 pitch - 57) + 0.5);
}

getFrequency()	returns	the	frequency	corresponding	to	a	
pitch	byte,	as	per	MIDI	specs.

int getOnTime(long frequency) {
 int index = (int) floor(frequency / 100.0);
 if (index > ON_TIME_ARRAY_LENGTH - 1) {return 0;}
 else {return LOOKUP_TABLE_SCALE * on_times[index];}
}

getOnTime()	looks	up	the	ON	time;	the	lookup	table	uses	
divisions	of	100Hz,	and	0	is	returned	if	the	frequency	is	too	high.

15

Programming	the	Interrupter
Follow	these	instructions	to	update	the	firmware	on	the	inter-
rupter’s	ATmega	microcontroller.		You	will	need	an	AVR	ISP	pro-
grammer.	

1.	 Download	and	install	the	latest	version	of	Atmel	Studio	
here.

2.	 Start	Atmel	Studio	and	select	Tools > AVR Programming	to	
open	the	programming	window.

3.	 Plug	in	your	AVR	ISP	Mk.	II	programmer	and	select	it	
under	Tool > AVRISP mkII.

4.	 Select	the	correct	microcontroller	under	Device > AT-
mega328P.

5.	 Power	your	interrupter	board	and	plug	in	the	AVR	
programming	cable	with	the	wire	direction	facing	towards	
the	outside	of	the	board.		A	green	light	should	appear	on	
the	programmer	once	it	is	connected	correctly.	Inserting	the	
cable	the	wrong	way	will	not	damage	the	interrupter	or	the	
programmer.

6.	 Under	Device ID,	hit	“Read”	to	establish	a	connection	
with	the	microcontroller.	The	Target	Voltage	should	read	near	
5V.

7.	 Under	Interface Settings (the	default	tab),	set	the	ISP	
clock	slider	to	125kHz.

8.	 Select	the	Fuses	tab,	hit	“Read”	to	get	the	fuse	settings	in	
the	microcontroller	and	cofirm	the	following:

•	 CKDIV8	is	not	selected

•	 SUT_CKSEL	is	set	to	
EXTFSXTAL_16KCK_14CK_4MS1

9.	 If	these	fuses	are	set	differently,	change	them	to	the	
above	settings	and	hit	“Program”	to	reprogram	the	fuses.

10.	 Select	the	Memories	tab	and	locate	the	.hex	file	from	the	
download	above	under	“Flash”.	Select	“Erase device before
programming”	and	“Verify flash after programming”,	and	hit	“Pro-
gram”.		You’re	done!

http://www.atmel.com/microsite/atmel_studio6

16

Compiling	the	Firmware
Compiling	the	source	is	best	done	in	the	Arduino	IDE.	While	it	
may	be	possible	to	compile	it	with	a	vanilla	copy	of	AVR-gcc,	the	
Arduino	IDE	has	preconfigured	include	paths	that	make	compiling	
an	essentially	seamless	process.

1.	 Download	and	install	the	Arduino	IDE;	version	1.0.3	is	
recommended.

2.	 Unzip	the	downloaded	source	file.	You	should	get	a	
folder	called	“interrupter”;	it	is	important	to	leave	the	
name	of	this	folder	identical	to	the	.ino	file	inside	-	this	is	
required	by	the	Arduino	IDE.

3.	 Under	File > Preferences,	check	“show verbose output when
compiling”.

4.	 Hit	“Verify”	(the	button	with	the	check	mark	in	the	top	
left).	This	will	compile	the	code	into	a	.hex	file	that	you	can	
write	to	the	microcontroller.	Once	the	code	has	been	com-
piled,	the	location	of	the	temporary	folder	with	the	output	
files	will	be	printed.	You’re	done!

http://arduino.cc/en/Main/Software

