
1

oneTesla
Interrupter Firmware Guide
Contents:

•	 General overview (page 1)
•	 Code Walkthrough (page 2)
•	 How to program the interrupter (page 15)
•	 Compiling the code (page 16)

General Overview

The oneTesla MIDI controller is based on the ATMega 328P
microcontroller, manufactured by Atmel. At its heart, the hard-
ware on the board is extremely simple - a 5V regulator pro-

vides power to the board, a DIN5 MIDI jack connects a MIDI source
to the microcontroller through an optocoupler (this is necessary to
prevent ground loops between the MIDI source and MIDI receiver),
and an optical transmitter (which is simply an LED in a fancy pack-
age) sends the output pulses to the Tesla coil.

The interrupter’s firmware is written in C++, and is provided as an
Arduino project (compatible with the Arduino IDE). Upon reception
of a MIDI message, the code calls an appropriate handler function
(callback function) to process the message.

The code is organized in several files. In general, each chunk of code
is split across two files - a .h header file, which defines constants and
provides function definitions to other files, and a .cpp file, which
contains the actual implementations of the functions.

2

shared.h and constants.h
shared.h and constants.h contain definitions for global vari-
ables and defined constants, respectively. A global variable is one
that is defined across all files, and is accessible by all functions.
They need to be declared in a header file - this is necessary in
order to indicate to all program files accessing this variable that it
exists. However, they can only be defined once, in a .cpp file.

#ifndef __SHARED_H

extern volatile int on_time_1, on_time_2, current_
pitch_1, current_pitch_2, global_scaler_1, global_
scaler_2;
extern volatile long ticks_1, ticks_2;
extern volatile long note_1_period, note_2_period;
extern volatile boolean note_playing_1, note_play-
ing_2;
extern volatile long sustain_time_1, sustain_time_2;
extern volatile boolean sustain, sustaining_1, sus-
taining_2;

#define __SHARED_H
#endif

on_time_1 and on_time_2 are the computed ON times
of the two currently running notes. current_pitch_1 and
current_pitch_2 are the current pitches of the two notes
(in MIDI byte format). global_scaler_1 and global_
scaler_2 are values from 0-127 which are used to scale the
volumes of the notes.
ticks_1 and ticks_2 are two values used internally by the
sustain feature. note_1_period and note_2_period are
the periods (in microseconds) of notes 1 and 2. note_play-
ing_1 and note_playing_2 are flags which indicate whether

notes 1 and 2 are present. sustain_time_1 and sustain_
time_2 are internal variables used by the sustain feature. sustain
indicates whether the sustain pedal is depressed, and sustain-
ing_1 and sustaining_2 indicate whether notes 1 and
2 are in the “tail” part of a sustain, respectively. Moving on to
constants.h:

#define LOOKUP_TABLE_SCALE 3

This line defines a constant which is used to scale all of the values
in the pulse width table. When modifying the code, it is important
to remember this value exists! It makes modifying the table values
for different sizes of Tesla coil easy.

#define MIN_ON_TIME 10

This line defines a minimum ON time value (in microseconds).
This insures that the pulse widths are never too low (which
would make the coil stop producing output). The next few lines
should not be messed with, so moving along...

#define map_velocity(v) (vel_map[v])
#define map_sustain(t) ((float) t / (float) SUSTAIN_
TIME)

These two change the mapping curves for velocity and the shape
of the sustain envelope, respectively. v is a byte from 0-127 (the
higher the velocity, the larget the value). t is the time into the
sustain curve, in microseconds.

3

shared.h and constants.h
#define SUSTAIN_TIME 750000
#define ON_TIME_ARRAY_LENGTH 20
static int on_times[] = ...

SUSTAIN_TIME defines the length of the sustain period in
microseconds. ON_TIME_ARRAY_LENGTH defines the length of
the on-times array (necessary since C++ arrays don’t store their
own lengths). on_times[] is an array that stores the on-times
of the coil for different frequencies of note, measured in micro-
seconds.

static int vel_map[] = ...

Finally, this line defines a lookup table for velocity mapping.

4

interrupter.ino
interrupter.ino contains the main program code. It does
two things: set up the microntroller configuration registers and
enter an infinite main loop which handles MIDI messages.

void setup() {
 DDRD |= (1 << 2);
 PORTD &= ~(1 << 2);

 DDRD &= ~(1 << 3);

The first statement sets the transmitter pin to output mode. The
second sets its value to zero. The third sets the mode switch pin
to input mode.

setupADC();
setupTimers();

These two lines call functions (defined in util.cpp) that set up
the ADC and timers.

MIDI.begin(MIDI_CHANNEL_OMNI);
MIDI.setHandleNoteOn(HandleNoteOn);
MIDI.setHandleNoteOff(HandleNoteOff);
MIDI.setHandleStop(HandleStop);
MIDI.setHandleContinue(HandleContinue);
MIDI.setHandleControlChange(HandleControlChange);
MIDI.setHandleSystemExclusive(HandleSystemExclusive);
MIDI.setHandlePitchBend(HandlePitchBend);

MIDI.setHandleSystemReset(HandleSystemReset);

These statements set up the MIDI library. The first line initiates
MIDI communications. The next few lines set the handlers for
each type of MIDI message. To add a new handler, declare a new
function somewhere that takes the appropriate arguments (look

in MIDI.h for the argument types), and then attach it to the
MIDI class with:

MIDI.setHandleMessageType(messageHandlerName);

if (!(PIND & (1 << 3))) fixedLoop();

Finally, this line reads the pin the toggle switch is connected to,
and enters the fixed-frequency loop if that pin is low.
interrupter.ino also contains two loops - a MIDI loop and a
fixed-frequency loop. The MIDI loop is very simple:

void loop() {
 MIDI.read();
}

The loop simply repeatedly calls MIDI.read(). Nothing else is
needed - whenever a MIDI message is received, the MIDI library
automatically calls the appropriate callback function we attached
in setup().

The fixed-frequency loop is a little more complex. Briefly, it
reads the values set by the two potentiometers every iteration,
then turns the optical transmitter ON and OFF for appropriate
amounts of time using delays.

void fixedLoop() {
 while (1) {
 ADMUX &= ~(1 << MUX0);
 _delay_us(300);
 uint8_t val_2 = ADCH;

This first sets the value of the ADMUX register. This selects which
ADC pin to read from. Next, it waits for 300 microseconds to
make sure the ADC is selected, and finally reads the ADC.

5

interrupter.ino
int period_delay = 3500 + (long) 1500 * val_2 / 256;

This line computes the cycle delay time based on the value read
from the ADC. The minimum frequency is 200Hz, the maximum
frequency is approximately 300Hz.

ADMUX |= (1 << MUX0);
_delay_us(300);
uint8_t val_1 = ADCH;

These three lines read in the value of the pulsewidth pot.

double on_time_scale = (double) val_1 / 256;
int on_time = getOnTime(1 / period_delay);
on_time *= on_time_scale;
if(on_time < MIN_ON_TIME) {on_time = MIN_ON_TIME;}

Next, we compute the scale factor for the on time, call getOn-
Time() to compute the on time, and scale it by the computed
scale factor. Finally, if the on time is too small, we clamp it from
below to MIN_ON_TIME.

PORTD |= (1 << 2);
delayMicroseconds(on_time);
PORTD &= ~(1 << 2);
delayMicroseconds(period_delay);

Finally, we turn the optocoupler on, wait for on_time microsec-
onds, turn it off, and wait for period_delay microcseconds.

6

handlers.cpp
handlers.cpp contains the MIDI message handlers that are
called upon reception of MIDI messages. These, along with the
timer setup and ISR’s found in timers.cpp, form the core func-
tionality of the interrupter.

void HandleNoteOn(byte channel, byte pitch,
			 byte velocity) {
 if (channel != 1) return;
 PORTD &= ~(1 << 2);

HandleNoteOn takes the channel the message occured on,
the MIDI pitch byte, and the MIDI velocity byte of the note as
arguments. First, if the message is not on channel 1, it is ignored.
Next, we turn off the optical transmitter, just to be safe.

if (velocity == 0) {
 if (pitch == current_pitch_1) {
 HandleNoteOff(channel, pitch, velocity);
 }
 if (pitch == current_pitch_2) {
 HandleNoteOff(channel, pitch, velocity);
 }
 return;
}

Next, we check whether the velocity is 0. A zero-velocity note-
on message turns off a note - we check which note to turn off
by comparing it to the stored note pitches (note that a file or
instrument should never turn on a note twice in a row, with no
note-off message in between).

if (pitch == current_pitch_1 && note_playing_1 &&
sustaining_1) {

 stopTimer1();
 sustaining_1 = false;
 global_scaler_1 = map_velocity(velocity);
 startTimer1(pitch);
 return;
}
if (pitch == current_pitch_2 && note_playing_2 &&
sustaining_2) {
 stopTimer2();
 sustaining_2 = false;
 global_scaler_2 = map_velocity(velocity);
 startTimer2(pitch);
 return;
}

We next handle the special case where a key is released, but im-
mediately afterwards, during the sustain period, the key is de-
pressed again. In this case, we clear the “sustaining” status of the
previous note, and restart the timers, taking into account the new
keypress.

if (note_playing_1) {
 if (note_playing_2) {
 stopTimer1();

 stopTimer2();

Next, we try to start playing the note. In the first case, notes 1
and 2 are both playing, so we proceed by stopping both timers.

7

handlers.cpp
if (pitch >= TIMER_2_MIN) {
 global_scaler_1 = global_scaler_2;
 sustaining_1 = sustaining_2;
 sustain_time_1 = sustain_time_2;
 global_scaler_2 = map_velocity(velocity);
 sustaining_2 = false;
 startTimer1(current_pitch_2);
 startTimer2(pitch);
}

The next bit of code tries to find a timer to play the new note.
The default behavior of the interrupter tries to forget the old-
est note. In other words, when a new note comes in, the cur-
rent note 2 replaces note 1, and the new note becomes note 2.
However, because of timer prescaler restrictions, note 2 cannot
be below a certain pitch (defined as TIMER_2_MIN). If the new
note statisfies this restriction, the code proceeds as described.

else if (current_pitch_2 >= TIMER_2_MIN) {
 global_scaler_1 = map_velocity(velocity);
 sustaining_1 = false;
 startTimer1(pitch);
 startTimer2(current_pitch_2);
}

Otherwise, the code leaves note 2 as is, and sets note 1 to the
current note.

else {
 startTimer1(current_pitch_1);
 startTimer2(current_pitch_2);
}

Finally, if all else fails, the code ignores the new note and contin-

ues playing the old notes.
If only one note is playing, the code tries to find a place for the
new note:

else if (pitch >= TIMER_2_MIN) {
 stopTimer2();
 global_scaler_2 = map_velocity(velocity);
 sustaining_2 = false;
 startTimer2(pitch);
}

If the new note meets the requirements of Timer 2, note 2 is set
to the new note.

else if (current_pitch_1 >= TIMER_2_MIN) {
 stopTimer1();
 global_scaler_2 = global_scaler_1;
 sustaining_2 = sustaining_1;
 sustain_time_2 = sustain_time_1;
 note_playing_2 = true;
 current_pitch_2 = current_pitch_1;
 global_scaler_1 = map_velocity(velocity);
 sustaining_1 = false;
 note_playing_1 = true;
 current_pitch_1 = pitch;
 startTimer1(current_pitch_1);
 startTimer2(current_pitch_2);
}

Otherwise, the code tries to swap note 1 into note 2 if possible,
and then set note 1 to the new note. If all fails, the code ignores
the new note.

8

handlers.cpp
else {
 stopTimer1();
 global_scaler_1 = map_velocity(velocity);
 sustaining_1 = false;
 startTimer1(pitch);
}

Finally, if no notes are already playing, the new note becomes note
1.

void HandleNoteOff(byte channel, byte pitch,
 byte velocity) {
 if (channel != 1) return;

The next function is the note off handler. We begin by ignoring all
messages not from channel 1.

if (!sustain) {
 if (pitch == current_pitch_1) {
 stopTimer1();
 note_playing_1 = false;
 } else if (pitch == current_pitch_2) {
 stopTimer2();
 note_playing_2 = false;
 }
}

Next, if sustain is not enabled, check what note corresponds to
the note off message, and stop that note.

else {
 if (pitch == current_pitch_1) {
 sustaining_1 = true;
 sustain_time_1 = SUSTAIN_TIME;
 } else if (pitch == current_pitch_2) {
 sustaining_2 = true;
 sustain_time_2 = SUSTAIN_TIME;
 }
}

If sustain is enabled, instead of stopping the timer, we set the
sustain flag for the appropriate note. sustain_time_x counts
how many microseconds of the sustain “tail” remain. Note that
the handler doesn’t actually do any of the fading; instead, the
sustain flag tells the timer that it should start fading the note away
every cycle.

void HandleStop() {
 stopTimer1();
 stopTimer2();
 sustaining_1 = false;
 sustaining_2 = false;
 note_playing_1 = false;
 note_playing_2 = false;
}

The next function handles the MIDI stop message. It simply turns
off both notes, taking care to reset the sustaining states to
false.

void HandleContinue() {
 if (note_playing_1) startTimer1(current_pitch_1);
 if (note_playing_2) startTimer2(current_pitch_2);
}

Continue messages are handled by resuming all notes that were
playing when MIDI was paused.

9

handlers.cpp
void HandleControlChange(byte channel, byte number, 	
				 byte value) {
 if (channel != 1) return;

Control change messages contain a command number (which
specifies the type of command) and a value (the argument of the
command). First, as usual, we ignore all messages that are not in
channel 1.

if (number == 0x78 || number == 0x79 ||
 number == 0x7B || number == 0x7C) {
 stopTimer1();
 stopTimer2();
 sustaining_1 = false;
 sustaining_2 = false;
 note_playing_1 = false;
 note_playing_2 = false;
}

Commands 0x78, 0x79, 0x7B, and 0x7C are all STOP mes-
sages; in this case, we turn off the timers, and flag the notes as not
playing.

if (number == 0x40) {
 if (value < 64) {
 sustain = false;
 if (sustaining_1) {
 sustaining_1 = false;
 note_playing_1 = false;
 stopTimer1();
 }
 if (sustaining_2) {
 sustaining_2 = false;
 note_playing_2 = false;
 stopTimer2();

 }
 } else {
 sustain = true;
 }
}

Command 0x40 toggles sustain; data values less than 64 turn
sustain off (and halts all sustaining notes); otherwise, sustain is
turned on. This message is sent whenever the sustain pedal is
depressed or released.

void HandlePitchBend(byte channel, int value) {
 if (channel != 1) return;
 float fbend_amount = ((float) value)/((float)
(0x2000));

The pitch bend handler first computes the fractional pitch bend.
The MIDI library automatically turns the MIDI pitch bend un-
signed int into an int centered around zero. We scale it by
0x2000 (the maximum pitch bend value) to get the fractional
bend value.

float bender = 1.0f - 0.1*fbend_amount;

Next, it computes a “bend factor”; this is used to scale the fre-
quency.

long temp = (long) (bender * ticks_1);
if (temp >= BITS_16) temp = BITS_16 - 1;
OCR1A = (int) temp;
temp = (long) (bender * ticks_2);
if (temp >= BITS_8) temp = BITS_8 - 1;

OCR2A = (int) temp;

Finally, it scales the pitch values appropriately, taking care not to
overflow the timer compare registers. More precisely, it scales the

10

handlers.cpp
ticks that are stored in the timer compare registers (OCR1A and
OCR2A), which are proportional to the period lengths of the
notes.

void HandleSystemReset() {
 stopTimer1();
 stopTimer2();
 note_playing_1 = false;
 note_playing_2 = false;
 on_time_1 = 0;
 on_time_2 = 0;
 current_pitch_1 = 0;
 current_pitch_2 = 0;
 global_scaler_1 = 127;
 global_scaler_2 = 127;
 sustain = sustaining_1 = sustaining_2 = false;
}

Finally, the firmware handles system reset messages by halting
both notes and restoring all global variables to their default val-
ues.

11

timers.cpp
timers.cpp contains the setup functions and the ISR’s for the
timers, which actually play a note. A timer is a special piece of
hardware on the microcontroller which counts up every tick.
When the counter reaches a preset value, it triggers an interrupt,
which tells the microcontroller to stop everything and service the
interrupt (by calling the interrupt service routine, or ISR).

void startTimer1(byte pitch) {
 long frequency = getFrequency(pitch);
 note_1_period = 1000000 / frequency;
 current_pitch_1 = pitch;
 on_time_1 = getOnTime(frequency);

The timer 1 setup routine begins by converting the MIDI note to
a frequency (in hertz). It then computes the period in microsec-
onds, records the current pitch, and looks up the ON time for
the frequency specified.

long ticks = 2 * note_1_period;

Next, it computes the number of clock ticks per period (since the
microcontroller is running at 16 MHz, the default value of 8 cycles
per tick translates into 0.5 μS per tick).

if (ticks <= BITS_16) {
 TCCR1B = (1 << CS11) | (1 << WGM12);

}

If the tick count doesn’t make timer 1 overflow, the timer 1 scaler
is set to 0.5 μS per tick.

else if ((ticks /= 4) <= BITS_16) {
 TCCR1B = (1 << CS11) | (1 << CS10) | (1 << WGM12);

}

Otherwise, we set the timer to 2 μS per tick, and scale the value
of ticks accordingly.

ticks--;
ticks_1 = ticks;
OCR1A = ticks;
if (on_time_1 != 0) {TIMSK1 |= (1 << OCIE1A);}
note_playing_1 = true;

Finally, it decrements ticks (necessary for correct operation;
e.g. 1 tick runs for 1 μS and not 0.5, since the timer stops if its
compare register is less than zero), records the tick value (neces-
sary for pitch bend), writes the tick value to the timer 1 compare
register OCR1A, starts the timer, and flags note 1 as “playing”.

Timer 2 operates nearly identically to timer 1; only the prescaler
code is different:

long ticks = 16 * note_2_period;
if (ticks <= BITS_8) {TCCR2B = (1 << CS20);}
else if ((ticks /= 8) <= BITS_8) {TCCR2B = (1 <<
CS21);}
else if ((ticks /= 4) <= BITS_8) {TCCR2B = (1 <<
CS21) | (1 << CS20);}
else if ((ticks /= 2) <= BITS_8) {TCCR2B = (1 <<
CS22);}
else if ((ticks /= 2) <= BITS_8) {TCCR2B = (1 <<
CS22) | (1 << CS20);}
else if ((ticks /= 2) <= BITS_8) {TCCR2B = (1 <<
CS22) | (1 << CS21);}
else if ((ticks /= 4) <= BITS_8) {TCCR2B = (1 <<
CS22) | (1 << CS21) | (1 << CS20);}

12

timers.cpp
This code repeatedly increases the prescaler and decreases
ticks, until the value of ticks is an 8-bit integer (as required
by timer 2). The remainder of the timer 2 setup code is identical
to the timer 1 setup code.

void stopTimer1() {
 TIMSK1 &= ~(1 << OCIE1A);
}
void stopTimer2() {
 TIMSK2 &= ~(1 << OCIE2A);
}

The timer stop functions only stop the ISR’s from being called; it
is up the calling function to properly set the various global flags
associated with halting a note.

Finally, we have the ISR handlers. Timer 1 and timer 2 call virtually
identical ISR’s, so we will only describe ISR 1.

ISR (TIMER1_COMPA_vect, ISR_BLOCK) {

Note the rather cryptic declaration of the ISR. This is because,
ISR, TIMER1_COMPA_vect, and ISR_BLOCK are all defined
constants; the C++ preprocessor expands this internally into a
more conventional function declaration. It is not necessary to
know what it expands to for the end-user’s purposes.

uint8_t val = ADCH;
float scaler = (float) (val) / 256.0f;
int on_time_1_adjusted = (int) (on_time_1 * scaler);

First, we read the value of the ADC (ADCH is a defined value that

expands to a memory location). Next, we scale it to a float
between 0.0 and 1.0, and then scale the ON time by it.

scaler = (float) (global_scaler_1) / 256.0f + 0.5f;
on_time_1_adjusted = (int) (on_time_1_adjusted *
scaler);

Next, we shift and scale the velocity scaler so it is a float be-
tween 0.5 and 1.0, and scale the ON time by it.

if (sustaining_1) {
 scaler = map_sustain(sustain_time_1);
 on_time_1_adjusted = (int) (on_time_1_adjusted *
scaler);

Next, we scale the ON time to match the time spent during the
sustain period. First, the code maps the sustain time via the map_
sustain() function, which takes the time (in microseconds)
spent sustaining, and returns a float between 0.0 and 1.0
which describes the scale factor. Next, it multiplies the ON time
by that factor.

sustain_time_1 -= note_1_period;

Next, we update the time remaining in the sustain period. Since
we lack an extra hardware timer to do this, we decrement the
sustain time by the note period (since we know the timer is
called once every cycle).

if (on_time_1_adjusted < 3) {
 sustaining_1 = false;
 note_playing_1 = false;
 stopTimer1();
 PORTD &= ~(1 << 2);
}

13

timers.cpp
If the computed pulsewidth is less than 3 microseconds, the ISR
stops the timer, and unflags the note as sustaining and playing. This
is necessary since delay_us() does not function reliably for
times under 3 microseconds.

if (on_time_1_adjusted < MIN_ON_TIME && !sustain-

ing_1) {on_time_1_adjusted = MIN_ON_TIME;}

If the note is not sustaining, we clamp the pulsewidths from below
to MIN_ON_TIME, which ensures that notes do not disappear
at low power settings or velocity settings (we need a few cycles
before any sparks are produced).

PORTD |= (1 << 2);
delayMicroseconds(on_time_1_adjusted);
PORTD &= ~(1 << 2);
delayMicroseconds(on_time_1_adjusted);
TIFR2 &= ~(1 << OCF2A);

Finally, it turns the transmitter on for an appropriate amount of
time. After turning off the transmitter, it waits for a period of
time, to insure that the timers are not fired too close to each
other.

14

util.cpp
util.cpp contains assorted short setup and utility functions,
which will be documented here.

void setupADC() {
 ADMUX =
 (1 << REFS0) | // Use AVCC reference
 (1 << ADLAR) | // Left-adjust the result
 (1 << MUX0); // Select ADC1 (on-time pot)

 ADCSRA =
 (1 << ADEN) | // Enable the ADC
 (1 << ADSC) | // Start free-running conversion
 (1 << ADATE) | // Enable auto-triggering
 (1 << ADPS0) | // Set prescaler to 128
 (1 << ADPS1) |
 (1 << ADPS2);

 // Ensure that the auto-triggering source is in 	
 // free-running mode
 ADCSRB = 0x00;
}

setupADC() sets various ADC configuration registers. More
precisely, it sets the individual bits of the registers, which are each
flags that configure the behavior of the microcontroller. To do this,
it bitwise OR’s numbers which correspond to singular 1’s in the
correct position. ADEN, MUX0, etc are integers which determine
the position.

void setupTimers() {

 // Set up 16-bit Timer1
 // CTC mode, hardware pins disconnected
 TCCR1A = 0x00;
 // CTC mode, don’t set prescaler yet
 TCCR1B = (1 << WGM12);
 TIMSK1 = 0x00;

 // Set up 16-bit Timer2
 // CTC mode, hardware pins disconnected, don’t set
 // prescaler yet
 TCCR2A = (1 << WGM21);
 TCCR2B = 0x00;
 TIMSK2 = 0x00;

}

CTC mode sets the timer to Clear Timer on Compare; i.e. the
timer will automatically count to the timer compare value, then
reset its count to zero,.

long getFrequency(byte pitch) {
 return (long) (220.0 * pow(pow(2.0, 1.0/12.0),
 pitch - 57) + 0.5);
}

getFrequency() returns the frequency corresponding to a
pitch byte, as per MIDI specs.

int getOnTime(long frequency) {
 int index = (int) floor(frequency / 100.0);
 if (index > ON_TIME_ARRAY_LENGTH - 1) {return 0;}
 else {return LOOKUP_TABLE_SCALE * on_times[index];}
}

getOnTime() looks up the ON time; the lookup table uses
divisions of 100Hz, and 0 is returned if the frequency is too high.

15

Programming the Interrupter
Follow these instructions to update the firmware on the inter-
rupter’s ATmega microcontroller. You will need an AVR ISP pro-
grammer.

1.	 Download and install the latest version of Atmel Studio
here.

2.	 Start Atmel Studio and select Tools > AVR Programming to
open the programming window.

3.	 Plug in your AVR ISP Mk. II programmer and select it
under Tool > AVRISP mkII.

4.	 Select the correct microcontroller under Device > AT-
mega328P.

5.	 Power your interrupter board and plug in the AVR
programming cable with the wire direction facing towards
the outside of the board. A green light should appear on
the programmer once it is connected correctly. Inserting the
cable the wrong way will not damage the interrupter or the
programmer.

6.	 Under Device ID, hit “Read” to establish a connection
with the microcontroller. The Target Voltage should read near
5V.

7.	 Under Interface Settings (the default tab), set the ISP
clock slider to 125kHz.

8.	 Select the Fuses tab, hit “Read” to get the fuse settings in
the microcontroller and cofirm the following:

•	 CKDIV8 is not selected

•	 SUT_CKSEL is set to
EXTFSXTAL_16KCK_14CK_4MS1

9.	 If these fuses are set differently, change them to the
above settings and hit “Program” to reprogram the fuses.

10.	 Select the Memories tab and locate the .hex file from the
download above under “Flash”. Select “Erase device before
programming” and “Verify flash after programming”, and hit “Pro-
gram”. You’re done!

http://www.atmel.com/microsite/atmel_studio6

16

Compiling the Firmware
Compiling the source is best done in the Arduino IDE. While it
may be possible to compile it with a vanilla copy of AVR-gcc, the
Arduino IDE has preconfigured include paths that make compiling
an essentially seamless process.

1.	 Download and install the Arduino IDE; version 1.0.3 is
recommended.

2.	 Unzip the downloaded source file. You should get a
folder called “interrupter”; it is important to leave the
name of this folder identical to the .ino file inside - this is
required by the Arduino IDE.

3.	 Under File > Preferences, check “show verbose output when
compiling”.

4.	 Hit “Verify” (the button with the check mark in the top
left). This will compile the code into a .hex file that you can
write to the microcontroller. Once the code has been com-
piled, the location of the temporary folder with the output
files will be printed. You’re done!

http://arduino.cc/en/Main/Software

